ISO Cluster classifier by ArcGIS for unsupervised classification of the Landsat TM image of Reykjavík
نویسندگان
چکیده
The paper presents the use of Landsat TM image processed by ArcGIS Spatial Analyst Tool for environmental mapping southwestern Iceland, region Reykjavik. Iceland is one most special Arctic regions with unique flora and landscapes. Its environment presented vulnerable ecosystems highlands where vegetation affected climate, human or geologic factors: overgrazing, volcanism, annual temperature change. Therefore, land cover types in contribute to nature conservation, sustainable development monitoring purposes. This starts review current trends remote sensing, importance imagery general particular, requirements GIS specifically satellite analysis. followed extended methodological workflow supported illustrative print screens technical description data processing ArcGIS. used this research include which was captured using GloVis methodology includes a involving several steps raster ArcGIS: 1) coordinate projecting, 2) panchromatic sharpening, 3) inspection statistics, 4) spectral bands combination, 5) calculations, 6) unsupervised classification, 7) mapping. classification done clustering technique ISO Cluster algorithm Maximum Likelihood Classification. finally results application concludes final remarks on perspectives based ArcGIS.The present landscapes divided into eight distinct classes: bare soils; shrubs smaller trees river valleys, urban areas including green spaces; water areas; forests Reykjanesfólkvangur National reserve; ice-covered areas, glaciers cloudy regions; ravine valleys sparse type vegetation: rowan, alder, heathland, wetland; rocks; 8) mixed areas. discussion machine learning methods opportunities their applications GIS-based analysis Earth Observation ArcGIS, visualization, decision making forestry development.
منابع مشابه
study of cohesive devices in the textbook of english for the students of apsychology by rastegarpour
this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...
control of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولCluster Analysis of Landsat Tm Data
Cluster analysis ~ystem by using Statistical Analysis System (SAS) is constructed. The analysis system is applied to Landsat TM data. The s:x spectral bands except t~e thermal band of TM data are used for analysis. Three hierarchical algorithms of cluster analysIs, \\:,ard method, a,:,erag~ lmkage, and centroid method, are prepared in the framework of SAS cluster. The results by three alg;of1th...
متن کاملthe innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولOptimal Bayesian Classifier for Land Cover Classification Using Landsat TM Data
An optimal Bayesian classifier using mixture distribution class models with joint learning of loss and prior probability functions is proposed for automatic land cover classification. The probability distribution for each land cover class is more realistically modeled as a population of Gaussian mixture densities. A novel two-stage learning algorithm is proposed to learn the Gaussian mixture mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of Natural Sciences Research
سال: 2021
ISSN: ['2738-1013', '2738-0971']
DOI: https://doi.org/10.5937/bnsr11-30488